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Multi-Institution ARIES Project
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Six Stellarator Power Plants Developed
Wit Worldwide Over Past 25 y
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@ Six Stellarator Power Plants Developed
v Worldwide Over Past 25 y (Cont.)
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@ Stellarators Offer Unique Features
sk and Engineering Challenges
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Advantages:
— Inherently steady-state devices
— No need for large plasma current
— No external current drive
— No risk of plasma disruptions
— Low recirculating power due to absence of current-drive requirements

— No instability and positional control systems.

Challenges:
— Complex geometry
— Maintainability and component replacement
— Highly constrained local shielding areas
— 3-D modeling
— Managing large volume of active materials.
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Study aimed at reducing stellarators’ size by:

— Developing compact configuration with
advanced physics & technology

— Optimizing minimum plasma-coil distance | .=
(A,;,,) through rigorous nuclear assessment.
3 Field Periods Configuration N
Average Major Radius 7.75 m
Average Minor Radius 1.7 m
Aspect Ratio 4.5
Fusion Power 2400 MWV
Average NWL 2.6 MW/m?
Net Electric Power 1000 MW,
COE ($2004) 78 mills/kWh
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Radial Build Definition:
— Dimension of all components
— Optimal composition

Neutron Wall Loading Profile:
— Toroidal & poloidal distribution
— Peak & average values

High-Performance

Shielding Module at A,

n

Activation Issues:
— Activity and decay heat
— Thermal response during
LOCA/LOFA events
— Radwaste classification &
management

Blanket Parameters:
— Dimension
— TBR, enrichment, M|
— Nuclear heat load
— Damage to FW
— Service lifetime

Radiation Protection:
— Shield dimension & optimal
composition
— Damage profile at shield,
manifolds, VV, and magnets
— Streaming issues
— Workers and public protection




@ Nuclear Task Involves Active
i Interaction with many Disciplines
contour, magnet CL)
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@ Reference Dual-cooled LiPb/FS Blanket
-------------- Selected with Advanced LiPb/S1C as Backup

WISCONSIN
Breeder Multiplier Structure FW/Blanket Shield VvV
Coolant Coolant Coolant
Internal VV*:
Flibe Be FS Flibe Flibe H,0
LiPb (backup) - SiC LiPb LiPb H,O
LiPb (reference) - FS He/LiPb He H,0
Li,SiO, Be FS He He H,0
External VV#;
LiPb — FS He/LiPb He or H,O He
Li — FS He/Li1 He He

* VV inside magnets.
# VYV outside magnets.



@ ARIES-CS Requirements Guide

i In-vessel Component Design

Calculated Overall TBR 1.1

Net TBR (for T self-sufficiency) ~1.01

Damage to Structure 200 dpa - advanced FS
(for structural integrity)

Helium Production @ Manifolds and VV 1 He appm
(for reweldability of FS)

S/C Magnet (@ 4 K):
Peak Fast n fluence to Nb,Sn (E > 0.1 MeV) 101 n/cm?
Peak Nuclear heating 2 mW/cm?
Peak dpa to Cu stabilizer 6x10- dpa
Peak Dose to electric insulator < 10" rads

Plant Lifetime 40 FPY

Availability 85%

Operational dose to workers and public <2.5 mrem/h
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@ FW Shape Varies Toroidally and Poloidally:
Challenging 3-D Modeling Problem
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@ UW Developed CAD/MCNP Coupling Approach to
-------------- Model ARIES-CS for Nuclear Assessment
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Only viable approach for ARIES-CS

3-D neutronics modeling.

Geometry and ray tracing in CAD
Radiation transport physics in
MCNPX.
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Toroidal Angle

| @ | Neutron Wall Loading Distribution
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Real 3-0 Source

T ———
IB Poloidal Angle IB

. Toroidal Angle Poloidal Angle
Peak (Min) [MW/m’] (degrees)g (degrees)g

5.26 (0.32) -11 (-4) -18 (-116)

Peak/Ave. NWL =2
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@ Well-Optimized Blanket & Shield
Protect Vital Components
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@ High Performance Components at A_. Help

Achieve Compactness, Minimize Major
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Radius, and Enhance Economics

Vacuum Vessel

Ga
35 LiPb & He Manifolds Cm
20 Y S 2
. 28
32 FS-Shield He
2
5 L —Back Wall Tube WC-Shield
' 34
54 || Full Blanket )
| Non-uniform 4
Blanket
| Divertor 25
4 FW ]
20 SOL _ =
_______ Plasma

Full Blanket/Shield and Divertor  Non-uniform, Tapered Blanket/Shield

(61%+15%= 76% of FW area)

(24% of FW area)
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@ Tritium Breeding Requirement
vicwen Determined Minimum Major Radius
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e Large machines breed more T as non-uniform blanket coverage decreases with R.
e Designs with R < 7.5 m will not provide T self-sufficiency.
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R=7.75 m Reference Design Provides
Wit Tritium Self-Sufficiency
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3-D model includes essential components for TBR:
— Non-uniform and full blanket/shield
— Homogenized: FW/Blanket/BW

Shield
Mamfolds Divertor
Divertor. ,\

Calculated Overall TBR =1.1

with 70% Li enrichment Non-uniform

Blanket

Uniform
Blanket

Shield

Manifolds
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Neutron Streaming Through Penetrations

e Compromises Shielding Performance

HADITON

e 7 types of penetrations:

Y . Ceplant
— 198 He tubes for blanket (32 cm ID) oo - o s Sopply el
— 24 Divertor He access pipes (30-60 cm ID) o h.‘.ﬁ..n--.
— 30 Divertor pumping ducts (42 x 120 cm each) bt 2
— 12 Large pumping ducts (1 x 1.25 m each) Shield Maciam
— 3 ECH ducts (24 x 54 cm each). 1 oca v
— 6 main He pipes - HX to/from blanket (72 cm ID each) pkid Local
— 6 main He pipes - HX to/from divertor (70 cm ID each) N1y Siekd

ey -

e  Potential solutions: S
—  Local shield behind penetrations [ T Rzl
—  He tube axis oriented toward lower neutron source "I‘I o "

—  Penetration shield surrounding ducts T ihvener  CollACodl
—  Replaceable shield close to penetrations ™ = oy s o

— Avoid rewelding VV and manifolds close to penetrations
— Bends included in some penetrations.
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@ 3-D Assessment of Streaming Through
WISCONSIN Divertor He Access Pipe

HHHHHHH

Attila 3-D e —.
Model -‘}j;f" 1 — '

Shield inserts help protect
surrounding components
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@ Key Nuclear Parameters

WISCONSIN
Peak NWL 5.3 MW/m?
Average NWL 2.6 MW/m?
Peak to Average NWL 2
Calculated Overall TBR 1.1 with 70% Li enrichment
Net TBR ~1.01
FW/blanket Lifetime 3 FPY
Shield/manifold/VV/magnet Lifetime 40 FPY
Overall Energy Multiplication 1.16
Amin 1.3 m
A 1.8 m

max
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@ ARIES-CS Major Radius
iicoen  Approaches R of Advanced Tokamaks
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Well optimized radial build along with advanced physics and
technologies helped reduce ARIES-CS size
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@ ARIES Project Committed to
e Radwaste Minimization
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Stellarator waste volume dropped by 3-fold
over 25 y study period

* Actual volumes (not compacted, no replacements).
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@ Highlights of ARIES-CS
e Safety Features
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Environmental impact:
— Low activation materials with strict impurity control
= minimal long-term environmental impact.
— No high-level waste.
— Minimal radioactive releases” during normal and abnormal operations.

No energy and pressurization threats to confinement barriers (VV and cryostat):

— Decay heat problem solved by design — Chemical energy controlled by design
— Chemical reaction avoided — Overpressure protection system
— No combustible gas generated — Rapid, benign plasma shutdown.

Occupational and public safety:

— No evacuation plan following abnormal events (early dose at site boundary < 1 rem”)
to avoid disturbing public daily life.

— Low dose to workers and personnel during operation and maintenance activity
(< 2.5 mrem/h").

— Public safety during normal operation (bio-dose << 2.5 mrem/h") and following credible
accidents:

e [External events (seismic, hurricanes, tornadoes, etc.).
* LOCA, LOFA, LOVA, and by-pass events.

# Such as T, volatile activated structure, corrosion products, and erosion dust. Or, from liquid and gas leaks.
* 1 rem (= 10 m Sv) accident dose stated in Fusion Safety Standards, DOE report, DOE-STD-6002-96 (1996).
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@ In-vessel Components Exhibit Structural
Wi Integrity during LOCA/LOFA Event
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First Wall
————— LiPb-1
Mid Blanket Vacuum Vessel
; 800 T T I T T T
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e Design Base Accident scenario: He LOCA and LiPb LOFA in all modules
and water LOFA in VV.

» Plasma stays on for 3 seconds after onset of LOCA/LOFA.
e Peak FW temperature remains below 740°C — reusability limit for ferritic steel.
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@ Radwaste Management Approach
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e Three options examined:
— Disposal in repositories: LLW (WDR < 1)
— Recycling — reuse within nuclear facilities (dose < 10,000 Sv/h)

— Clearance — release slightly-radioactive materials to commercial market
if CI < 1.

e Lack of geological repositories and tighter environmental controls will force
fusion designers to promote recycling and clearance, avoiding disposal”

= minimize radwaste burden for future generations.

e There’s growing international effort in support of this new trend.

* L. El-Guebaly, “Environmental Aspects of Recent Trend in Managing Fusion Radwaste: Recycling and Clearance, Avoiding Disposal,”
This IAEA TM, Wednesday @ 9 AM.
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@ Comparison Between Reference and
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Backup Systems

WISCONSIN
LiPb/He/FS LiPb/SiC

Calculated Overall TBR 1.1 1.1
FW/blanket lifetime 3 FPY 3.4 FPY
Overall energy multiplication 1.16 1.1
Ny, 42% 56%
Structure unit cost” 103 $/kg 510 $/kg
Blanket/divertor/shield/manifolds cost” $288M $282M
Cost™ of heat transfer/transport system $475M $175M
Pumping power 183 MW, ---
LSA factor 2 1
Cost of Electricity:

Reference design (R=7.75 m) 78 mills/kWh 60 mills/kWh

Full blanket/shield everywhere 87 mills/kWh

*1in 2004 $.

(R=10.1 m)
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@ Conclusions
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* Nuclear assessment received considerable attention during ARIES-CS design process.

e First time ever complex stellarator geometry modeled for nuclear assessment using UW
newly developed CAD/MCNP coupling approach.

e Radial build satisfies design requirements in terms of breeding sufficient tritium and
shielding vital components.

e Novel shielding approach developed for ARIES-CS helped reduce radial standoff by
40%, major radius by 30%, and overall cost by 10%.

* ARIES-CS demonstrates adequate performance in several safety and environmental
areas.

e Successful integration of well-optimized radial build into final design, along with
carefully selected engineering parameters and overarching safety and environmental
constraints, delivered attractive and truly compact stellarator power plant.
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